Banach contraction principle for cyclical mappings on partial metric spaces
نویسندگان
چکیده
*Correspondence: [email protected] 1Department of Mathematics, Çankaya University, Ankara, 06530, Turkey Full list of author information is available at the end of the article Abstract We prove that the Banacah contraction principle proved by Matthews in 1994 on 0-complete partial metric spaces can be extended to cyclical mappings. However, the generalized contraction principle proved by (Ilić et al. in Appl. Math. Lett. 24:1326-1330, 2011) on complete partial metric spaces can not be extended for cyclical mappings. Some examples are given to illustrate our results. Moreover, our results generalize some of the results obtained by (Kirk et al. in Fixed Point Theory 4(1):79-89, 2003). An Edelstein type theorem is also extended when one of the sets in the cyclic decomposition is 0-compact. MSC: 47H10; 54H25
منابع مشابه
Indicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps
In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive resul...
متن کاملThe Banach Type Contraction for Mappings on Algebraic Cone Metric Spaces Associated with An Algebraic Distance and Endowed with a Graph
In this work, we define the notion of an algebraic distance in algebraic cone metric spaces defined by Niknam et al. [A. Niknam, S. Shamsi Gamchi and M. Janfada, Some results on TVS-cone normed spaces and algebraic cone metric spaces, Iranian J. Math. Sci. Infor. 9 (1) (2014), 71--80] and introduce some its elementary properties. Then we prove the existence and uniqueness of fixed point for a B...
متن کاملConvergence of an Iterative Scheme for Multifunctions on Fuzzy Metric Spaces
Recently, Reich and Zaslavski have studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In 2011, Aleomraninejad, et. al. generalized some of their results to Suzuki-type multifunctions. The study of iterative schemes for various classes of contractive and nonexpansive mappings is a central topic in fixed point theory. The importance of Banach ...
متن کاملOptimal coincidence best approximation solution in non-Archimedean Fuzzy Metric Spaces
In this paper, we introduce the concept of best proximal contraction theorems in non-Archimedean fuzzy metric space for two mappings and prove some proximal theorems. As a consequence, it provides the existence of an optimal approximate solution to some equations which contains no solution. The obtained results extend further the recently development proximal contractions in non-Archimedean fuz...
متن کاملOn Best Proximity Points in metric and Banach spaces
Notice that best proximity point results have been studied to find necessaryconditions such that the minimization problemminx∈A∪Bd(x,Tx)has at least one solution, where T is a cyclic mapping defined on A∪B.A point p ∈ A∪B is a best proximity point for T if and only if thatis a solution of the minimization problem (2.1). Let (A,B) be a nonemptypair in a normed...
متن کامل